
Hans-Petter Halvorsen

https://www.halvorsen.blog

Views, Stored Procedures
and Triggers in SQL Server

Contents
In this tutorial we will learn to create and use
Views, Stored Procedures and Triggers in SQL
Server.
• Introduction
• Views
• Stored Procedures
• Triggers

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Database
The Database Design or Entity
Relationship Diagram (ERD) is
created with DB Designer.

This is a simplified ERD used to see how we can create and
use Views, Stored Procedures and Triggers in SQL Server

Table Script
CREATE TABLE [COURSE] (
[CourseId] int IDENTITY(1,1) NOT NULL UNIQUE,
[CourseName] nvarchar(50) NOT NULL UNIQUE,
PRIMARY KEY ([CourseId])
);

CREATE TABLE [STUDENT] (
[StudentId] int IDENTITY(1,1) NOT NULL UNIQUE,
[StudentName] nvarchar(50) NOT NULL,
[AverageGrade] float(53),
PRIMARY KEY ([StudentId])
);

CREATE TABLE [GRADE] (
[GradeId] int IDENTITY(1,1) NOT NULL UNIQUE,
[CourseId] int NOT NULL,
[StudentId] int NOT NULL,
[Grade] float(1) NOT NULL,
PRIMARY KEY ([GradeId])
);

ALTER TABLE [GRADE] ADD CONSTRAINT [GRADE_fk1] FOREIGN KEY ([CourseId]) REFERENCES [COURSE]([CourseId]);

ALTER TABLE [GRADE] ADD CONSTRAINT [GRADE_fk2] FOREIGN KEY ([StudentId]) REFERENCES [STUDENT]([StudentId]);

Create Courses and Students

insert into COURSE (CourseName) values ('Mathematics')
insert into COURSE (CourseName) values ('Science')
insert into COURSE (CourseName) values ('Programming')

insert into STUDENT (StudentName) values ('Elvis Presley')
insert into STUDENT (StudentName) values ('John Wayne')
insert into STUDENT (StudentName) values ('John Statham')

Let's create some default data in our tables:

Courses and Students

Insert Grades
insert into GRADE (CourseId, StudentId, Grade) values (1, 1, 2.5)

insert into GRADE (CourseId, StudentId, Grade) values (2, 1, 3.5)

insert into GRADE (CourseId, StudentId, Grade) values (3, 1, 1.5)

Here student “Elvis Presley” (StudentId=1) gets
the following grades in the different courses:
• “Mathematics” (CourseId=1) => Grade = 2.5
• “Science” (CourseId=2) => Grade = 3.5
• “Programming” (CourseId=3) => Grade = 1.5

Hans-Petter Halvorsen

https://www.halvorsen.blog

Views

Table of Contents

Problem Description

But we want to get information like this:

But it is not possible because the information
is stored in 3 different tables.
=> The solution is to create and use a View.

We create and use the following SQL
queries to get information:

Views
• A View is a “virtual” table that can contain

data from multiple tables.
• Basically, a View is a SQL query that links 2

or more tables together making it possible
to get data from these tables in a single
query.

View Example
CREATE VIEW StudentData
AS

SELECT
STUDENT.StudentName,
COURSE.CourseName,
GRADE.Grade
FROM STUDENT
INNER JOIN GRADE ON STUDENT.StudentId = GRADE.StudentId
INNER JOIN COURSE ON GRADE.CourseId = COURSE.CourseId
GO

In a View we typically use
“INNER JOIN” to join information
stored in different Tables.

Create the View
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = 'StudentData'
AND type = 'V')

DROP VIEW StudentData
GO

CREATE VIEW StudentData
AS

SELECT
STUDENT.StudentName,
COURSE.CourseName,
GRADE.Grade
FROM STUDENT
INNER JOIN GRADE ON STUDENT.StudentId = GRADE.StudentId
INNER JOIN COURSE ON GRADE.CourseId = COURSE.CourseId
GO

To create the View, we just create
and run it in the Query Editor in
SQL Server Management Studio

Create the View

To create the View, we just create
and run it in the Query Editor in
SQL Server Management Studio

View Designer
To can also use the “View Designer” in SQL Server Management Studio

Either you create the View using the “View Designer” or
create the Views manually in SQL Server Management
Studio, I advice you to save your View as a SQL Script
file (file with extension .sql) so you can use it later,
insert it on other databases, etc.

Using the View

Views Queries
You can use Views almost as you use Tables. Here are some examples:

But you typically cannot
use Delete

Hans-Petter Halvorsen

https://www.halvorsen.blog

Stored Procedures

Table of Contents

Problem Description

insert into GRADE (CourseId, StudentId, Grade) values (1, 1, 2.5)

insert into GRADE (CourseId, StudentId, Grade) values (2, 1, 3.5)

insert into GRADE (CourseId, StudentId, Grade) values (3, 1, 1.5)

To create/insert Grades we need to create and execute queries like this:

The “drawback” is that we need to remember the CourseIds and
the StudentIds, typically we only remember and want to use
their names.
=> The solution is to create and use a Stored Procedure.

Stored Procedures
• A Stored Procedure is very similar as a Method/Function

in C# or Python - it is a piece of code with SQL
commands that do a specific task – and you can reuse it.

• A Stored Procedure can have Input Arguments and Return
values (just like a Method/Function).

• It also adds a layer of security, because you can do a lot
of harm by creating the wrong queries. In that way you
can create a set of Stored Procedures that is well
implemented and tested properly.

• Stored Procedures can also prevent “SQL Injection” used
by “hackers”, etc.

Stored Procedure Example
CREATE PROCEDURE CreateStudentGrade
@StudentName varchar(50),
@CourseName varchar(50),
@Grade float
AS

DECLARE
@StudentId int,
@CourseId int

select @StudentId = StudentId from STUDENT where StudentName = @StudentName

select @CourseId = CourseId from COURSE where CourseName = @CourseName

insert into GRADE (StudentId, CourseId, Grade) values (@StudentId, @CourseId, @Grade)
GO

Input Arguments. Note the “@” before the variable names.

Internal variables

Create the Stored Procedure
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = 'CreateStudentGrade'
AND type = 'P')

DROP PROCEDURE CreateStudentGrade
GO

CREATE PROCEDURE CreateStudentGrade
@StudentName varchar(50),
@CourseName varchar(50),
@Grade float

AS

DECLARE
@StudentId int,
@CourseId int

select @StudentId = StudentId from STUDENT where StudentName = @StudentName

select @CourseId = CourseId from COURSE where CourseName = @CourseName

insert into GRADE (StudentId, CourseId, Grade) values (@StudentId, @CourseId, @Grade)
GO

To create the Stored Procedure, we just
create and run it in the Query Editor in
SQL Server Management Studio

Create the Stored Procedure

To create the Stored Procedure, we just
create and run it in the Query Editor in
SQL Server Management Studio

Using the Stored Procedure

execute CreateStudentGrade 'John Wayne ', 'Mathematics', 1.0

execute CreateStudentGrade 'John Wayne', 'Science', 2.0

execute CreateStudentGrade 'John Wayne', 'Programming', 2.5

insert into GRADE (CourseId, StudentId, Grade) values (1, 1, 2.5)

insert into GRADE (CourseId, StudentId, Grade) values (2, 1, 3.5)

insert into GRADE (CourseId, StudentId, Grade) values (3, 1, 1.5)

Using the Stored Procedure
We can now insert Grades using the Stored Procedure:

Then we can use the View to see the grades for
the different students in the different courses:

Using the Stored Procedure
Then we can use the View to see the grades for
the different students in the different courses:

If we only want to see the grades for a
specific Student , we can do like this:

Updated version
• Assume we use a StudentName or

a CourseName that do not exist in
the database.

• Or that the Grade already exists?

In this case the student
“Donal Trumph” does
not exists and we get an
error message:

Updated version #1
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = 'CreateStudentGrade'
AND type = 'P')

DROP PROCEDURE CreateStudentGrade
GO

CREATE PROCEDURE CreateStudentGrade
@StudentName varchar(50),
@CourseName varchar(50),
@Grade float

AS

DECLARE
@StudentId int,
@CourseId int

if exists (select * from STUDENT where StudentName = @StudentName)
select @StudentId = StudentId from STUDENT where StudentName = @StudentName

if exists (select * from COURSE where CourseName = @CourseName)
select @CourseId = CourseId from COURSE where CourseName = @CourseName

if (@StudentId is not null and @CourseId is not null)
insert into GRADE (StudentId, CourseId, Grade) values (@StudentId, @CourseId, @Grade)

else
print 'Student or Course do not exist'

GO

Now the Stored Procedure checks if the
Student or Course exist and if not, no data is
inserted, and you get a message saying
“'Student or Course do not exist”.

Updated version #2
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = 'CreateStudentGrade'
AND type = 'P')

DROP PROCEDURE CreateStudentGrade
GO

CREATE PROCEDURE CreateStudentGrade
@StudentName varchar(50),
@CourseName varchar(50),
@Grade float

AS

DECLARE
@StudentId int,
@CourseId int

if not exists (select * from STUDENT where StudentName = @StudentName)
insert into STUDENT (StudentName) values (@StudentName)

select @StudentId = StudentId from STUDENT where StudentName = @StudentName

if not exists (select * from COURSE where CourseName = @CourseName)
insert into COURSE (CourseName) values (@CourseName)

select @CourseId = CourseId from COURSE where CourseName = @CourseName

if (@StudentId is not null and @CourseId is not null)
insert into GRADE (StudentId, CourseId, Grade) values (@StudentId, @CourseId, @Grade)

else
print 'Something went wrong...'

GO

Now the Stored Procedure checks if the
Student or Course exist and if not, the
Student and/or Course is/are created.

Hans-Petter Halvorsen

https://www.halvorsen.blog

Triggers

Table of Contents

Problem Description
execute CreateStudentGrade 'John Wayne ', 'Mathematics', 1.0

execute CreateStudentGrade 'John Wayne', 'Science', 2.0

execute CreateStudentGrade 'John Wayne', 'Programming', 2.5

We want to automatically update the
“AverageGrade” for each student when
inserting, updating or deleting Grades for a
specific Student in a specific Course.
=> The solution is to create and use a Trigger.

Triggers
• A Trigger is executed when you insert, update or

delete data in a Table specified in the Trigger.
• A trigger is a stored procedure in a database

that automatically invokes whenever a special
event in the database occurs.

• A Trigger is attached to a specific Table.
• You can use a Trigger to change data in the

same table or in other tables.

Trigger Example
CREATE TRIGGER CalcAvgGrade ON GRADE
FOR INSERT, UPDATE, DELETE
AS

DECLARE
@StudentId int,
@AverageGrade float

select @StudentId = StudentId from INSERTED

select @AverageGrade = AVG(Grade) from GRADE where StudentId = @StudentId

update STUDENT set AverageGrade = @AverageGrade where StudentId = @StudentId

GO

Note! “INSERTED” is a temporarily table
containing the latest inserted data, and it
is very handy to use inside a trigger.

You need to specify which Table the
Trigger shall be attached to.

Create the Trigger
IF EXISTS (SELECT name

FROM sysobjects
WHERE name = 'CalcAvgGrade'
AND type = 'TR')

DROP TRIGGER CalgAvgGrade
GO

CREATE TRIGGER CalcAvgGrade ON GRADE
FOR INSERT, UPDATE, DELETE
AS

DECLARE
@StudentId int,
@AverageGrade float

select @StudentId = StudentId from INSERTED

select @AverageGrade = AVG(Grade) from GRADE where StudentId = @StudentId

update STUDENT set AverageGrade = @AverageGrade where StudentId = @StudentId

GO

SQL Server Management Studio

Insert Grades

You can also use the Stored Procedure we made earlier:
execute CreateStudentGrade 'John Wayne ', 'Mathematics', 1.0

Results

insert into GRADE (CourseId, StudentId, Grade)
values (1, 1, 2.5)

insert into GRADE (CourseId, StudentId, Grade)
values (2, 1, 3.5)

insert into GRADE (CourseId, StudentId, Grade)
values (3, 1, 1.5)

Here student “Elvis Presley” (StudentId=1) get his
grades in the courses:
“Mathematics” (CourseId=1) => Grade = 2.5
“Science” (CourseId=2) => Grade = 3.5
“Programming” (CourseId=3) => Grade = 1.5

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1: Views, Stored Procedures and Triggers in SQL Server
	Slide 2: Contents

	Introduction
	Slide 3: Introduction
	Slide 4: Database
	Slide 5: Table Script
	Slide 6: Create Courses and Students
	Slide 7: Courses and Students
	Slide 8: Insert Grades

	Views
	Slide 9: Views
	Slide 10: Problem Description
	Slide 11: Views
	Slide 12: View Example
	Slide 13: Create the View
	Slide 14: Create the View
	Slide 15: View Designer
	Slide 16: Using the View
	Slide 17: Views Queries

	Stored Procedures
	Slide 18: Stored Procedures
	Slide 19: Problem Description
	Slide 20: Stored Procedures
	Slide 21: Stored Procedure Example
	Slide 22: Create the Stored Procedure
	Slide 23: Create the Stored Procedure
	Slide 24: Using the Stored Procedure
	Slide 25: Using the Stored Procedure
	Slide 26: Using the Stored Procedure
	Slide 27: Updated version
	Slide 28: Updated version #1
	Slide 29: Updated version #2

	Triggers
	Slide 30: Triggers
	Slide 31: Problem Description
	Slide 32: Triggers
	Slide 33: Trigger Example
	Slide 34: Create the Trigger
	Slide 35: SQL Server Management Studio
	Slide 36: Insert Grades
	Slide 37: Results

	Finished
	Slide 38

